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Abstract. In this research article, we will find the velocity for time de-
pendent pressure gradient which may increases, decreases or pulsate with
respect to time. The MHD flow of a Burgers’ fluid with porous medium
in circular channel is take into account for the study. We derived the gov-
erning equation for the analytical solutions of this problem. The solution
for the velocity field are give in the form of Bessel and modified Bessel
function of zero order by using the modified Darcy’s law and the resis-
tance of the porous medium. The behaviour of other physical, magnetic
and permeability parameters is observed by assuming constant value of
pressure gradient. The graphical depict and possible special cases are also
discussed.
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1. INTRODUCTION

The Magnetohydrodynamics(MHD) is the combination of two major fields i.e. fluid
mechanics and electrodynamics. The MHD flow has considerable interest in different field
of sciences. In 19th centaury it becomes more important for the researchers because of the
fabrication of electromagnetic pump by Hartman [16] use to make the connection between
jet-wave therapeutic. In electromagnetic pump ”Lorentz force” arises while shifting be-
tween the AC current into the magnetic field varying with respect to time.
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The feasible application of MHD flow is that its allow to convert the heat into electronic
energy for which MHD power generator is used. The MHD flow has wide application
in form of rotating cylinders in the field of physical sciences such as astrophysics and
geophysics. Hayat et al. [17] considered the two problems of an Oldroyd-B fluid model
over an infinite oscillating plate in the presence of conducting heat and electricity when
the whole system is rotating normal to the oscillatory plate. The modified Darcy’s law is
used to find out the behaviour of oscillatory flow of Burger’s fluid in porous medium by
Hayat et al. [18] and Khan et al. [20]. The limiting cases and effect of physical parameter
by graphical illustrations are also discussed. Ellahi [9] derived the analytical solution for
velocity field, temperature and nano concentration with the help of dimensionless technique
and Homotopy analysis method (HAM). He took the viscosity model for MHD flow of nano
fluid in pipe depending on two different temperature i.e. temperature of pipe is greater than
temperature of pipe. The MHD flow of third grade fluid with variable viscosity is used to
obtained the analytical solution of velocity and temperature by Riaz et al. [10]. Again the
Homotopy analysis method (HAM) is used for this purpose and the impact of parameters
shown by graphs. Haq [15] analyzed the MHD squeezed nano fluid flowing over a sensor
surface. They embedded the three different type of nano particles in the base fluid and
concluded that the water fractionalized copper nano particle provides better heat convection
than other mixtures, under consideration, through numerical simulation.

Safdar et al. [27] derived the expressions for velocity and stress for unsteady flow of
incompressible Burgers’ fluid in rotating circular domain with fractional derivatives. The
finite Laplace and Hankel transformations with generalized Lorenzo Hartley function are
used for this purpose. Park [23] considered the circular cylinder with partially porous wall
to find out the wave forces and run up wave along with wave conditions that all depending
on the hydrodynamic property. Darcy’s resistance law is used to depict the porosity on the
surface. To analyze the hydrodynamic control, they divided the surface into three different
portions and used eigenvalue expansion method for results. Awan et al. [4] discussed about
the chemical reaction of incompressible fluid over an infinite vertical plate with oscillation.
They found the expression for velocity depending upon temperature and also discussed
the behaviour of different physical parameters in results. Pop [24] wrote a report on the
flow passing through a circular cylinder and saturated in a porous medium with Brinkman
model. They find out the exact solution from governing equations leading to the result of
velocity behaviour. The importance of circular domain in MHD flow, MHD flow in curved
channel and accelerated periodic body can be seen in [12, 11, 31, 32]. Furthermore, the
interested reader can consult the references [1, 2, 3, 5, 6, 7, 8, 13, 19, 21, 25, 26, 28, 29, 30].

In medical sciences the pulsating flow going through the arteries has great importance
therefore it attracted the researcher towards them for a log time. In normal conditions
the working of heart is to circulate blood in arteries through its natural pumping system
due to this pressure gradient arises in arteries. These results motivated us to work on
the analytical solution of velocity filed for MHD flow of Buergers’ fluid passing through
the porous medium under the influence of pressure gradient including pulsating case. A
circular magnetic field is applied perpendicular to the flow direction. The obtained velocity
profile is used to predict the behaviour of different physical parameters and it concluded
that the velocity and permeability parameter of porous medium has direct relation where as
magnetic parameter behaved inversely to the velocity. Also, the frequency parameter have
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oscillatory behaviour with respect to time and other physical parameters. The obtained
results are appreciably influenced on these parameters so discussion of their behaviour is
more important in the problem.

2. NOTATIONS AND PRELIMINARIES

ρ density
v velocity
T extra stress tensor
p pressure
R Darcy’s resistance
J current density
B magnetic field
J×B Lorentz force due to magnetic field
µ dynamic viscosity
λ1, λ2 relaxation parameters
λ3 retardation parameter

3. FORMULATION OF BASIC EQUATIONS

The linear momentum equation and equation of continuity for porous medium of in-
compressible fluid and unsteady flow are,

ρ

(
∂v
∂t

+ v.∇v
)

= −∇p+∇.T + J × B + R, (3. 1)

∇.v = 0. (3. 2)

FIGURE 1. Geometry of the problem
We are dealing with Burgers’ fluid model of viscoelastic fluids. The properties of Burg-

ers’ fluid can be specified by following constants µ, λ1, λ2 and λ3. The constitutive equa-
tion of extra stress tensor T for Burgers’ fluid in the absence of hydrostatic pressure is as
follow

T+ (λ1 + λ2
∆

T)
∆

T = (A + λ3
∆

A)µ, (3. 3)
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A denotes the rate of deformation tensor and
∆

A,
∆

T are upper convected derivative of defor-
mation and extra stress tensor, defined as

∆

T =
∂T
∂t

+ (v.▽)T − LT − (LT)⊤, (3. 4)

where L and A can be defined as;

L = ▽v , A = (L + L⊤), (3. 5)

⊤ denotes the matrix transposition.
So equation (3.3) becomes

T+

(
λ1 + λ2

(
∂T
∂t

+ (v.▽)T − LT − (LT)⊤)
))(

∂T
∂t

+ (v.▽)T − LT − (LT)⊤)
)

=

[
λ3

(
∂A
∂t

+ (v.▽)A − LA − (LA)⊤)

)
+ A

]
µ.

(3. 6)

For λ1 = λ2 = λ3 = 0 the equation (3.6) reduced to viscous Newtonian fluid , λ2 =
λ3 = 0 leads to Maxwell fluid and for Oldroyd-B fluid substitute λ2 = 0; 0 < λ3 < λ1 in
equation (3.6).

The Lorentz force in terms of magnetic field defined as

J × B = −σB2
ov, (3. 7)

where Bo is the magnetic field and σ is the electric conductivity.

The Darcy’s resistance law convinced the consequent relation for Burgers’ fluid(
1 +

(
λ1 + λ2

∂

∂t

)
∂

∂t

)
R =

−µϕ
k

(
1 + λ3

∂

∂t

)
v, (3. 8)

where ϕ is the constant of porosity and k denotes the permeability of the porous medium.
For this problem we assume that

v = [0, 0, w(r, t)] , B = [0, Bo, 0] (3. 9)

and

R = [0, 0, Rz] , T =

 τrr τrθ τrz
τθr τθθ τθz
τzr τzθ τzz

 . (3. 10)

The continuity equation for velocity given in equation (3.9) will be definitely satisfied.
Now, the equation (3.7) and (3.8) implies that

J × B = [0, 0,−σB2
0w], (3. 11)(

1 +

(
λ1 + λ2

∂

∂t

)
∂

∂t

)
Rz =

−µϕ
k

(
1 + λ3

∂

∂t

)
w. (3. 12)

Therefore the equation (3.1) in component form can be written as

∂τrr
∂r

+
1

r
τrr = 0, (3. 13)
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∂τrz
∂r

+
1

r
τrz −

∂p

∂z
− σB2

0w +Rz = ρ
∂w

∂t
. (3. 14)

Also, the equation (3.6) resolved into components as

τrr +

(
λ1 + λ2

∂

∂t

)(
∂τrr
∂t

− 2
∂w

∂r
τrz

)
= −2µλ3

(
∂w

∂r

)2

, (3. 15)

τrθ +

(
λ1 + λ2

∂

∂t

)(
∂τrθ
∂t

− ∂w

∂r
τθz

)
= 0, (3. 16)

τrz +

(
λ1 + λ2

∂

∂t

)(
∂τrz
∂t

− ∂w

∂r
τzz

)
= µ

(
∂w

∂r
+ λ3

∂2w

∂r∂t

)
, (3. 17)

τθθ +

(
λ1 + λ2

∂

∂t

)(
∂τθθ
∂t

)
= 0, (3. 18)

τθz +

(
λ1 + λ2

∂

∂t

)(
∂τθz
∂t

)
= 0, (3. 19)

τzz +

(
λ1 + λ2

∂

∂t

)(
∂τzz
∂t

)
= 0. (3. 20)

As we observed, by solving the equation (3.13) gives

τrr =
f(t)

r
,

where f(t) is an arbitrary function of time. Where as solving equations (3.16), (3.18),
(3.19) and (3.20) gives output

τrθ = τθθ = τθz = τzz =
−g(r)(1 + λ1)e

t

λ2
,

here g is arbitrary function with respect to radius of cylinder “r′′. It can be notice that these
stress tensor components are showing negative behaviour while; r, t, λ1, λ2 ≥ 0. So, the
reduced system of equations is as follows:

∂τrz
∂r

+
1

r
τrz −

∂p

∂z
− σB2

0w +Rz = ρ
∂w

∂t
, (3. 21)

τrz +

(
λ1 + λ2

∂

∂t

)
∂τrz
∂t

= µ

[
∂w

∂r
+ λ3

∂2w

∂r∂t

]
. (3. 22)

4. FORMULATION OF THE PROBLEM

Here, we study the electrically conducting Burgers’ fluid flowing through the circular
cylindrical domain with porous medium. We consider that the radius of the cylinder is
R and we are taking the flow in the Z-direction only where magnetic field is applied per-
pendicular to z-axis. We also assuming that the motion is due to pressure gradient. By
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neglecting the induced magnetic field and eliminating the τrz in equation (3.21) and (3.22),(
1 +

(
λ1 + λ2

∂

∂t

))
∂w

∂t
− µ

ρ

(
1 + λ3

∂

∂t

)(
∂2w

∂r2
+

1

r

∂w

∂r

)
+
σB2

0

ρ

(
1 +

(
λ1 + λ2

∂

∂t

)
∂

∂t

)
w − 1

ρ

(
1 +

(
λ1 + λ2

∂

∂t

)
∂

∂t

)
Rz

=
−1

ρ

(
1 +

(
λ1 + λ2

∂

∂t

)
∂

∂t

)
∂p

∂z
. (4. 23)

Using equation (3.12) into equation (4.23)(
1 +

(
λ1 + λ2

∂

∂t

))
∂w

∂t
− µ

ρ

(
1 + λ3

∂

∂t

)(
∂2w

∂r2
+

1

r

∂w

∂r

)
+
σB2

0

ρ

(
1 +

(
λ1 + λ2

∂

∂t

)
∂

∂t

)
w +

µϕ

ρk

(
1 + λ3

∂

∂t

)
w

=
−1

ρ

(
1 +

(
λ1 + λ2

∂

∂t

)
∂

∂t

)
∂p

∂z
, (4. 24)

and appropriate boundary conditions are

w(R, t) = 0 ,
∂w(0, t)

∂r
= 0. (4. 25)

We defined the following dimensionless variables

⋆
r =

r

R
,

⋆
t =

µt

ρR2
,

⋆
w =

(
µL

△pR2

)
w,

⋆

λ1 =
λ1µ

ρR2
,

⋆

λ2 =

(
µ

ρR2

)2

λ2 and
⋆

λ3 =
µλ3
ρR2

, (4. 26)

putting equation (4.26) into governing equation (3.2) and boundary conditions. For the
sake of simplicity we drop the sign ” ⋆ ” here(

1 +

(
λ1 + λ2

∂

∂t

)
∂

∂t

)(
∂w

∂t
+Mw

)
−

(
1 + λ3

∂

∂t

)(
∂2w

∂r2
+

1

r

∂w

∂r

)
+

1

K

(
1 + λ3

∂

∂t

)
w =

(
1 +

(
λ1 + λ2

∂

∂t

)
∂

∂t

)
ψ(t), (4. 27)

where

M =
σB2

0R
2

µ
,

1

K
=
ψR2

k
, ψ(t) =

−L
△ p

∂p

∂z
, (4. 28)

also, the boundary conditions becomes as

w(1, t) = 0 and
∂w(0, t)

∂r
= 0. (4. 29)

In equation (4.28) co-efficient M is the magnetic parameter and K is the permeability pa-
rameter. When M = 0, magnetic forces are absent there. When M increases the magnetic
forces increases. Similarly, for K = 0 we have solid cylinder and for K → ∞ we get hol-
low cylinder. Equation (4.27) has different behaviour with respect to the types of pressure
gradient and boundary conditions.
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5. SOLUTION OF THE PROBLEM

Case 1: Increasing pressure gradient:-
Let

ψ(t) = P0e
αt (5. 30)

and

w(r, t) = F (r)eαt. (5. 31)

In equation (5.30) and (5.31) P0 and α are constants. Equation (4.27) in terms of equation
(5.30) and (5.31) is

(
1 +

(
λ1 + λ2

∂

∂t

)
∂

∂t

)(
∂F (r)eαt

∂t
+MF (r)eαt

)
−
(
1 + λ3

∂

∂t

)(
∂2F (r)eαt

∂r2
+

1

r

∂F (r)eαt

∂r

)
+

1

K

(
1 + λ3

∂

∂t

)
F (r)eαt

=

(
1 +

(
λ1 + λ2

∂

∂t

)
∂

∂t

)
P0e

αt. (5. 32)

After solving (5.32) we get the following differential equation

F
′′
(r)+

1

r
F

′
(r)−

[
(α+M)(1 + α(λ1 + αλ2))

(1 + αλ3)
+

1

K

]
F (r) =

−(1 + α(λ1 + αλ2))P0

(1 + αλ3)
,

(5. 33)
and boundary conditions are

F (1) = F
′
(0) = 0. (5. 34)

Therefore

F (r) =
(1 + α(λ1 + αλ2))P0

(1 + αλ3)β2

[
1− I0(βr)

I0(β)

]
. (5. 35)

In above equation I0(.) represents the zero order modified Bessel function and

β =

√
(α+M)(1 + α(λ1 + αλ2))

(1 + αλ3)
+

1

K
. (5. 36)

So the velocity field is given by

w(r, t) =
(1 + α(λ1 + αλ2))P0

(1 + αλ3)β2

[
1− I0(βr)

I0(β)

]
eαt. (5. 37)

Case 2: Decreasing pressure gradient:-
In this case, let

ψ(t) = P0e
−αt (5. 38)

and also assume that

w(r, t) = G(r)e−αt. (5. 39)
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In equation (5.38) and (5.39) P0 and α are constants. Equation (4.27) in terms of equation
(5.38) and (5.39) is(

1 +

(
λ1 + λ2

∂

∂t

)
∂

∂t

)(
∂G(r)e−αt

∂t
+MG(r)e−αt

)
−

(
1 + λ3

∂

∂t

)(
∂2G(r)e−αt

∂r2
+

1

r

∂G(r)e−αt

∂r

)
+

1

K

(
1 + λ3

∂

∂t

)
G(r)e−αt =

(
1 +

(
λ1 + λ2

∂

∂t

)
∂

∂t

)
P0e

−αt. (5. 40)

Equation (5.40) gives

G
′′
(r) +

1

r
G

′
(r)−

[
(α−M)(1− α(λ1 − αλ2))

(1− αλ3)
− 1

K

]
G(r

= − (1− α(λ1 − αλ2))P0

(1− αλ3)
, (5. 41)

with boundary conditions
G(1) = G

′
(0) = 0. (5. 42)

Therefore

G(r) =
−(1− α(λ1 − αλ2))P0

(1− αλ3)β2
1

[
1− J0(β1r)

J0(β1)

]
, (5. 43)

where J0(.) is the zero order modified Bessel function and

β1 =

√
(α−M)(1− α(λ1 − αλ2))

(1− αλ3)
− 1

K
. (5. 44)

So the associated velocity field is

w(r, t) =
−(1− α(λ1 − αλ2))P0

(1− αλ3)β2
1

[
1− J0(β1r)

J0(β1)

]
e−αt. (5. 45)

Case 3: Pulsating pressure gradient:-

We calculate the periodic pressure gradient due to cosine pulses in order to solve Eq. (4.27)
subject to the boundary condition (4.29), we assume that the function ψ(t) has oscillation
with frequency ω and amplitude P0 i.e.

ψ(t) = P0cosωt = ℜ(P0e
ιωt). (5. 46)

For this let the velocity function is of the form;

w(r, t) = ℜ(H(r)eιωt), (5. 47)

boundary conditions
H(1) = H

′
(0) = 0. (5. 48)

By putting (5.46), (5.47) into equation (4.27) and using (5.48),

H(r) =
(1 + ιω(λ1 + ιωλ2))P0

(1 + ιωλ3)β2
2

[
1− I0(β2r)

I0(β2)

]
, (5. 49)
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where

β2 = ±

√
(ιω +M)(1 + ιω(λ1 + ιωλ2))

(1 + ιωλ3)
+

1

K
. (5. 50)

Hence the velocity field is

w(r, t) = ℜ
(
(1 + ιω(λ1 + ιωλ2))P0

(1 + ιωλ3)β2
2

[
1− I0(β2r)

I0(β2)

]
eιωt

)
. (5. 51)

6. RESULTS AND DISCUSSIONS

The analytical solution of unsteady MHD flow of Burgers’ fluid for velocity field is
available in this research work. We assumed that the Burgers’ fluid is passing through
the circular domain which have porous walls. For different values of physical parameters,
we calculated the velocity profile having variations with respect to r and t in Eqs. (37),
(45) and (51). These variations can be seen from Figs. 2 to 19 for P0 = 1 and for fixed
values of parameters λ1, λ2, λ3,M,K, α and ω. The effects of relaxation parameters λ1

FIGURE 2. Velocity profile of increasing pressure gradient for different
values of λ1 and fixed values for t = 3, λ2 = 2, λ3 = 1,M = 0.5,K =
10 and α = 0.1

is illustrated in Figs. 2, 8 and 14. We observed that the velocity is increasing with respect
to λ1 in case(1) (Increasing pressure gradient) and case(2) (Decreasing pressure gradient)
where as velocity is decreasing with respect to λ1 in case(3) (Periodic pressure gradient).
Similarly for non-Newtonian parameter λ2, the velocity increases in case(1) and case(2)
but decreases in case(3) as shown in Figs. 3, 9 and 15 for fix values of λ1, λ3,M,K, α and
ω.
The influence of retardation parameters λ3 is presented in Figs. 4, 10 and 16. The velocity
field decreases in case(1), (2) and it increases in case(3) for fixed values of λ1, λ2,M,K, α
and ω.
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FIGURE 3. Velocity profile of increasing pressure gradient for different
values of λ2 and fixed values for t = 3, λ1 = 3, λ3 = 4,M = 0.5,K =
10 and α = 0.2

FIGURE 4. Velocity profile of increasing pressure gradient for different
values of λ3 and fixed values for t = 3, λ1 = 3, λ2 = 2,M = 0.5,K =
10 and α = 0.2

FIGURE 5. Velocity profile of increasing pressure gradient for different
values of M and fixed values for t = 24, λ1 = 3, λ2 = 2, λ3 = 1,K =
10 and α = 0.1
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FIGURE 6. Velocity profile of increasing pressure gradient for different
values of K and fixed values for t = 3, λ1 = 3, λ2 = 2, λ3 = 0.2,M =
0.5 and α = 0.1

FIGURE 7. Velocity profile of increasing pressure gradient for different
values of α and fixed values for t = 0.7, λ1 = 3, λ2 = 2, λ3 = 0.1,M =
0.5 and K = 10

FIGURE 8. Velocity profile of decreasing pressure gradient for different
values of λ1 and fixed values for t = 24, λ2 = 2, λ3 = 4,M = 0.5,K =
10 and α = 0.1
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FIGURE 9. Velocity profile of decreasing pressure gradient for differ-
ent values of λ2 and fixed values for t = 1, λ1 = 3.3, λ3 = 2,M =
0.5,K = 10 and α = 2.4

FIGURE 10. Velocity profile of decreasing pressure gradient for differ-
ent values of λ3 and fixed values for t = 3, λ1 = 3, λ2 = 2,M =
0.5,K = 10 and α = 0.2

FIGURE 11. Velocity profile of decreasing pressure gradient for differ-
ent values of M and fixed values for t = 24, λ1 = 3, λ2 = 2, λ3 =
1,K = 10 and α = 0.1
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FIGURE 12. Velocity profile of decreasing pressure gradient for differ-
ent values of K and fixed values for t = 24, λ1 = 3, λ2 = 2, λ3 =
0.2,M = 0.5 and α = 0.1

FIGURE 13. Velocity profile of decreasing pressure gradient for differ-
ent values of α and fixed values for t = 0.1, λ1 = 3.3, λ2 = 2, λ3 =
2,M = 0.5 and K = 10

FIGURE 14. Velocity profile of pulsating pressure gradient for different
values of λ1 and fixed values for t = 1/4, λ2 = 0.15, λ3 = 0.25,M =
0.5,K = 8 and ω = π
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FIGURE 15. Velocity profile of pulsating pressure gradient for different
values of λ2 and fixed values for t = 1/4, λ1 = 0.15, λ3 = 0.25,M =
0.5,K = 8 and ω = π

FIGURE 16. Velocity profile of pulsating pressure gradient for different
values of λ3 and fixed values for t = 1/4, λ1 = 3.5, λ2 = 1.6,M =
0.5,K = 8 and ω = π

FIGURE 17. Velocity profile of pulsating pressure gradient for different
values of M and fixed values for t = 1/4, λ1 = 3.3, λ2 = 0.15, λ3 =
0.2,K = 8 and ω = π
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FIGURE 18. Velocity profile of pulsating pressure gradient for different
values of K and fixed values for t = 1/4, λ1 = 3.3, λ2 = 0.15, λ3 =
0.2,M = 0.5 and ω = π

FIGURE 19. Velocity profile of pulsating pressure gradient for different
values of ωt and fixed values for λ1 = 3.3, λ2 = 0.15, λ3 = 0.2,M =
0.5 and K = 8

We display the influence of magnetic parameterM on velocity field in Figs. 5, 11 and 17
for fixed values of other parameters. It can be noticed that the velocity profile is decreasing
in case(1) and (2) while it is increasing in case(3). Which shows that the magnetic force and
effect of porous medium is inversely proportional to velocity. The permeability parameter
K has direct proportion with velocity for fixed value of other parameters as shown in Figs.
6, 12 and 18.

For the known constant α velocity profile is given in Figs. 7 and 13. The velocity
filed has directly proportional behaviour with respect to this constant for fixed values of
λ1, λ2, λ3,M and K. In Fig. 19, velocity showing the oscillatory behaviour with respect
to the oscillation parameter ω for fixed values of λ1, λ2, λ3,M and K.
Finally, the illustration of non-Newtonian parameters i.e. relaxation parameters λ1, λ2 and
retardation parameters λ3 is given in Figs. 20 and 21. These figures showing that we have
more retardation factor in our porous cylindrical domain than the relaxation factor.
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FIGURE 20. Comparison velocity profile of increasing pressure gradient
for different values of λ1, λ2, λ3 respectively and taking fixed values as
λ1 = 0.5, λ2 = 0.5, λ3 = 0.5,M = 0.5,K = 10 and α = 0.3

FIGURE 21. Comparison velocity profile of decreasing pressure gradi-
ent for different values of λ1, λ2, λ3 respectively and taking fixed values
as λ1 = 0.5, λ2 = 0.5, λ3 = 0.5,M = 0.5,K = 10 and α = 0.3

7. CONCLUSION

We have following concluding remarks:

(1) : The behaviour of solution is depending on β, where β =
√

(α±M)(1±α(λ1±αλ2))
(1±αλ3)

± 1
K .

In this formula the positive sign leads to increasing pressure gradient(case(1)) and negative
sign leads to decreasing pressure gradient (case(2)).

(2) : As solution is depending upon the parameter β where as β is depending on parame-
ters λ1, λ2, λ3,M,K and α. So these physical parameters are also important for solution.
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(3) : When M = 0 and 1/K → 0, we have the same solution for MHD Burgers’ fluid

with β =
√

α(1±α(λ1±αλ2))
(1±αλ3)

.

(4) : For λ2 = 0 we have coincide results for MHD Oldroyd-B fluid as given in Eq.
(33), (40) and (47) in [14].

(5) : For λ2 = 0 and λ3 = 0, the resulting solution will be for MHD Maxwell fluid [14].
Which showing the consistency in results.
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